

Research Home

Published Reports

I-15 Test Bed

Contact Us

Links

What's Hot

In The Know

2007

Completed UDOT Research Need a Literature Search?

NEWSLETTER

MONTICELLO IN-PLACE COLD MIX RECYCLED ASPHALT BASE USING SOLVENTLESS EMULSION

By: Richard Sharp, UDOT Research Division

The project is located east of Monticello, Utah on US 491 and consists of total pavement reconstruction, shoulder widening and the addition of passing lanes. The pavement reconstruction is performed by a cold mix recycling of the

existing pavement and a 6" hot mix asphalt overlay to be topped in 2008 with a chip seal for improved skid resistance and to minimize hydroplaning.

LaGrand Johnson Construction began placing the cold mix recycled asphalt base using the old in place asphalt.

The project was observed by UDOT Research July 31, 2007for a few hours. Many pictures were taken to share with the UDOT Regions and other interested parties.

The process begins by roto-milling 3 inches of old asphalt pavement, and sizing it through a screening plant. Once it is sized, solventless emulsion, quick lime and water are added and mixed to

design proportions determined by the contractor. The material is then windrowed and a conventional asphalt pickup machine and paver process it as you would a hot mix asphalt. The solventless emulsion allows the compaction to begin within minutes of the placement. Considerable time savings is created by using the solvent less emulsion. The

compactive effort was performed by two steel wheel/rubber, vibrating rollers and a rubber tired static roller was used to complete the densification process.

Production rates for this process achieved 8,000 LF per day on a 14' wide section of roadway (half the roadway width) at the 3" recycled cutting depth. The recycling process at this production rate results in a time for completion of the recycling at close to 12 days of production. The production equates to around 900 ton per day of recycling.

Traditional construction, excavation, borrowing and untreated base placement for this project is estimated to take about 60 days to complete. Time is money!

A cursory comparison between the traditional process and the cold-in place recycling method used in this project indicates that an estimated savings of \$200,000 was realized.

Traffic was allowed on the recycled pavement to accommodate the traffic control and exhibited virtually no degradation.

Historically, cold mix recycling has been performed primarily in Region Four. Research Study on I-15 from Paragonah to Cedar City determined that the process was successful and the resulting pavement section was equal to or better than the traditional hot mix asphalt section. Keep in mind that recycling has "keep it green" in mind. Cold mix recycling reduces the amount of asphalt oil in a project and utilizes the existing asphalt and aggregates for a significant cost savings. It also reduces the amount of energy and product required. For more information, please contact Barry Sharp @ rsharp@utah.gov.

STILL WATCHING I-15: PART 1- MSE WALLS

By: Blaine Leonard, UDOT Research Division

Many people remember that during the early construction efforts on the I-15 Reconstruction Project in Salt Lake County, a large and far-reaching research effort was initiated. This unprecedented research effort, known as the I-15 National Test Bed for Transportation Research, ultimately involved 31 research projects supported with \$4.67 million of special, dedicated funding. A joint effort by UDOT, FHWA, Utah State University, University of Utah, Brigham Young University, and a variety of private consultants and contractors, the I-15 Test Bed has yielded vast amounts of engineering and construction data. While most of these projects are completed, some of these research efforts are still on-going. This article, the first in a series, summarizes the efforts initiated as part of the I-15 Test Bed to evaluate the performance of Mechanically Stabilized Earth (MSE) walls, some of which are still underway.

One of the chief design and construction challenges faced during the I-15 Reconstruction was the widening of large earth embankments within limited right-of-way over very soft, compressible subsoils. Designers and contractors met this challenge with a variety of innovative techniques and materials, including light-weight fill, expanded polystyrene (EPS Geofoam) fill, one-stage and two-stage MSE walls, lime-cement column soil stabilization, prefabricated vertical (PV) drains (wick drains), and fairly

conventional surcharging. UDOT initiated a long-term monitoring program to evaluate many of these innovative

techniques, and this monitoring program is still underway. The program involved the placement of a variety of measuring devices, such as survey points, vertical and horizontal inclinometers, pressure sensors, strain gages and magnet extensometers.

MSE walls were used on this project as a quick and efficient way to build vertical retaining walls within limited right-of-way. One-stage walls, where the precast concrete facing panel is erected as part of the wall, and two-stage walls, where the wall is built without the permanent facing and the panels are erected later, were constructed in many locations along the corridor. About 160 MSE walls were built as part of this project, some as high as 30 feet.

A variety of research efforts were initiated relative to MSE walls. Dr. Jim Bay and Dr. Loren Anderson, from Utah State University, with several graduate

students, instrumented a 30-foot wall at about 3600 South. They evaluated the stresses and displacements within the wall, the performance of the reinforcing within the wall, and the influences of the wall on the ground and structures in the wall vicinity. In a report published in 2003, they concluded that the MSE wall reinforcing mats were experiencing only 20% of the anticipated tension forces and that intermediate reinforcing layers were useful in controlling deformation during early settlement but were not necessary for overall wall stability. They found that the lateral soil loads behind the wall were less than the design loads, that the wall essentially moved as a rigid body, without much internal deformation, and the settlements beneath the wall were within anticipated limits. In a subsequent report, published in late 2004, Utah State described a detailed analytical model of the MSE wall at 3600 South. Their analysis pointed out the relationship between construction sequencing, construction timing, and wall stability. They recommended the use of finite element modeling of these walls to accurately assess the failure modes and safety factors.

Dr. Steven Bartlett, at the University of Utah, also has provided insights into the performance of MSE walls. A 10-year monitoring program of the I-15 geotechnologies, initiated while Steve was a project manager with the Research Division, included two MSE wall sites. Measurement of settlement and ground deformation is still underway, and will continue until 2011. Another former Research Division project manager, Clifton Farnsworth, continues to be involved in this effort. A modeling report issued in 2006 describes the effects on nearby structures from these large walls. Among other things, it concludes that the zone of significant settlement in front of an MSE wall founded on soft soil can be on the order of 1.3 times the height of the wall, and recommends that existing structures within that distance be avoided or mitigated. The study further outlines some advanced modeling techniques that can be used to understand the behavior of these walls.

Efforts to limit settlement beneath the MSE walls included the use of lime-cement columns. The acceleration of settlements beneath MSE walls often involved PV drains. The University of Utah studies evaluated both of these

techniques, their effectiveness and relative costs. A paper about to be published in the ASCE Journal of Geotechnical and Geoenvironmental Engineering concludes that the one-stage MSE wall with lime cement columns is approximately 1.6 times more expensive than a two-stage wall with surcharging and PV drains, but that the two-stage approach caused more settlement impact to adjacent structures. The advantages and disadvantages of each of these approaches is valuable information as we continue to include MSE walls in our design and construction projects. During the next four years, as these MSE walls are monitored further, we will gain additional insights into the long term settlements of these walls, the ground deformations in adjacent areas, and the performance of the walls.

In a related effort, new projects are underway at Utah State and Brigham Young Universities to evaluate the performance of MSE walls. Although not directly related to

the I-15 project, these studies are an outgrowth of the information gained from I-15 Test Bed projects. This current effort involves inspecting many of the existing MSE walls around the state, performing a risk analysis of the possible modes of failure in these walls, and developing a plan to mitigate the risk of failure in these walls. In addition, an analytical study of MSE walls will attempt to identify the potential impacts of deformation within the wall on pavement surfaces. Stay tuned for the results of these studies.

So, we are still watching, learning, and building upon the vast research effort undertaken during the I-15 Reconstruction. MSE walls were just one element of the innovative design and construction efforts undertaken and evaluated. We will continue our efforts to better understand these walls and how to employ them more efficiently. For more information, please contact Blaine Leonard bleonard@utah.gov or 801-965-4115.

UDOT'S BIODIESEL INTITIVE: LESSONS LEARNED TO DATE

By: Monica L. Gonzalez, UDOT Communications Office

Earlier this year, Utah Department of Transportation (UDOT) announced an experiment to grow biodesel producing crops such as safflower, canola and perennial flax and to generate bio-diesel as a source of fuel for its fleet. This experiment was to be conducted in partnership with Utah State University (USU). In May, UDOT seeded these crops on its rights-of-way along Utah's I-15 in Kaysville, Tremonton, Mona, and at Mile Marker 240. Once harvested, the crops would be processed by USU to obtain the bio-diesel fuel.

"UDOT is a national pioneer in this (bio-diesel experiment)," said Dallas Hanks, with USU. "This is something we never even thought about doing."

Before the seeds could be planted, there were things to consider, such as whether conditions would permit crops to grow along freeway shoulders, what environmental problems would arise, such as erosion, how soil conditions would be affected, and what would happen to the weed population along the highway. Preparation for the actual planting came after creating an economic model, selecting staff, sites and crops to be used. Existing vegetation on the right of way was killed, and machinery was selected for use during the planting process.

UDOT and USU were hoping to see results by this fall.

After monitoring the crop areas, it was found the crops did not do as well as UDOT and USU had hoped for. "I wouldn't call this a failure," said Dallas "we have learned a lot and know what changes need to be made. We knew the first year would be about learning what can be done, and how best to get it done."

The best producing area was the right of way along I-15 in Kaysville, with a Canola emergence rate of 35%. "The fact that we got some emergence in this weather is very positive. We were 45 days past prime planting time; late planting combined with above average temperatures and

low moisture created some unfavorable conditions, but when compared to a local canola farm, there was very little difference in the amount produced: that is very encouraging."

Among the lessons learned, one of the most significant was the depth of the planting. "We understood that ¾ of an inch was deep enough for the seeds, but at that depth, the seed basically just lay there, no moisture was getting to it from the ground and with no rainfall, there was no germination. We have learned that the seed needs to be at least 1 ½ inches deep, but deeper than 3 inches would be better because these seeds have a tap root and will mine for water. The control plot got fairly good germination, and those seeds were 8-10 inches deep," said Dallas. "We learned the soil conditions are acceptable and we can plant on it, but there are things we can do to help."

Dallas mentioned research being done by Michigan State using an industrial size aerator type of machine which makes an indentation in the ground 3 to 4 inches deep, about 7 inches apart. They then use manure slurry to create a planting pot for each seed, the organic matter plus the moisture make for an outstanding planting method, which produces a very good yield.

"We are working with some waste water treatment plants to create something similar, but we would use bio-solids slurry, which we would inject under the soil, as well as on top. The idea is to plant and fertilize the seed all at once" said Dallas. "We are meeting with the Department of Environmental Quality (DEQ) to see if we can get approval to use bio-solids."

"There has been such a great response to this experiment, from the media as well as corporations and private individuals over the last few months" said Dallas "we have received over 400 e-mails each month and the phone message box has been full every week."

One of the more positive and encouraging aspects of this project has been the financial aspect. In an update released on August 14th the planned budget listed was \$25,410. The actual cost came in at \$11,087, mostly due to donations and cooperation with other agencies. "We haven't even started to explore corporate donors for this project, but we know there are entities interested in biodiesel, among them Flying J and Chrysler" said Dallas. "Local waste treatment plants are also interested, as municipalities would save money by allowing UDOT to use the bio-solid waste."

As the end of the first season of this experiment approaches, there is already a list of things to do to prepare

for next season. USU will be conducting greenhouse research work to better determine which crops to plant. This research will include planting depth, soil amendments and best time for seeding.

Among the changes for next season, we may see the addition of Camelina seed to the list of those being planted, although more research is needed in order to determine if it would be an acceptable bio-diesel producing crop. "Camelina tends to oxidize faster than Canola or Safflower, meaning it can be stored for a very short period of time; that may not be what we are looking for with this experiment" said Dallas.

While this year's crops were less successful, UDOT is optimistic about the future of this project. "We are not done with this research and what you see right now is just some preliminary results. One year's data is not enough to draw a conclusion. We had a very dry season that very much affected the growth of these plants. We will seed again in the fall and next spring. With more moisture in the ground, hopefully with early seeding and relatively wet season next year, we anticipate better results. These preliminary results give us some good data that we could use for the second phase." Said Abdul Wakil, Research Project Manager with UDOT's Research Division, "these plants are very much on their own for water and if it does not rain, as we have experienced this season, then it is pretty much obvious we will get some poor yields."

FULL DEPTH RECLAMATION PROJECT. SANTA CLARA CITY-PIONEER PARKWAY

By: Richard Sharp, UDOT Research Division

SemMaterials of North Salt Lake began a full depth reclamation project on the City of Santa Clara's Pioneer Parkway. The Parkway had early failure and required a total reconstruction of 1.2 miles of this city street.

Rosenberg Associates, the engineering firm chosen to design the project, chose the full depth reclamation because of budget restraints. They determined this to be the most cost effective approach.

The Project consisted of utilizing the top five inches of the existing base and asphalt. The first step of reclaiming was to roto-mill the five inches and add water to establish optimum moisture for processing. The roadway width was 28

feet. The second step of the reclamation process was pulverizing the five inches to a smaller size and adding an asphalt emulsion formulated specifically for the stabilization process. The materials were obtained from the Parkway so the job-site specific mix design could be performed to determine the proper amount of emulsion required to support good roadway performance for years to come. The emulsion-adding process was finished and graded, ready for the hot mix topping.

The overall savings to Santa Clara City was \$ 50,000 when compared to the traditional reconstruct process. The real savings was in traffic interruption and time to complete. There was no material hauled from the site nor imported. The existing roadway materials were used to build the structural section and hot mix

asphalt was used as the topping.

The project began on July 25, 2007 and the traffic marking was performed by August 15, 2007. For more information about this project, please contact Barry Sharp rsharp@utah.gov

In The Know

NEW RESEARCH PROJECTS INITIATED

By: Blaine Leonard, UDOT Research Division

The Research Division is in the process of initiating 22 new research projects. These projects are the result of efforts by many UDOT employees, consultants, and university professors who came together at the annual UTRAC Workshop in March to identify UDOT's most pressing needs. At the workshop, nine working groups evaluated 77 unique "Problem Statements", and selected 41 of them as priority issues. The Research Division, in consultation with

UDOT's senior leaders, has determined that funding is available to initiate 22 of these projects.

The list of these new projects, and a detailed Problem Statement describing each project, is posted on the Research Division web site, under the "2007 UTRAC Workshop" heading. As each new project is initiated, a Project Manager is assigned from the Research Division. That person works with an internal UDOT Project Champion to assemble a Technical Advisory Committee to help steer the work. If you are interested in being involved with one of these new projects, volunteering to be on the TAC is a great way to get involved without committing large amounts of time. The Project Manager, Champion, and TAC work with the project's Principal Investigator to prepare a detailed scope of work, and issue a contract. In most cases, the Principal Investigator, a

person from a University or a consulting firm who will actually execute the research, is already known during the project selection process. Most projects require 10 to 24 months to complete, although some have longer durations.

The 22 projects currently being initiated include a wide variety of efforts in the areas of construction, maintenance, materials, environmental, planning and asset management, traffic management and safety, geotechnical, structural, and hydraulics. A few of these projects are as follows:

The "Machine Control Guidance" project will evaluate the use of new GPS and data processing technology to control construction equipment. Successful implementation of this technology will reduce the cost and time involved in construction surveying, resulting in accelerated construction schedules. A pilot project will be selected during the 2008 construction season for the evaluation of this technology. Contact Michael Fazio if you have questions about this project.

A "Field Evaluation of Culvert Rehabilitation" project will help us deal with the large number of aging culverts we have on our system. Slip lining of these culverts is a promising technology which allows for rehabilitation without culvert removal and replacement, but there are questions about standardized techniques, end treatments, and hydraulic characteristics. This project will assess these issues, and give us guidance on how to better repair and maintain our culvert assets. Contact Michael Fazio if you have questions about this project.

The "Quality Control Tests for Asphalt Mixes" project will evaluate the factors of cold temperature and fatigue in the performance of asphalt pavements. With the resolution of rutting issues and the modification of Superpave requirements, fatigue is becoming the most pressing issue in mix design. This project will evaluate rapid hot-mix tests used to control cold temperature characteristics. Contact Doug Anderson for more insight into this project.

A project to evaluate "Prefabricated Decks" will support the Department's efforts to move toward Accelerated Bridge Construction. As we use precast concrete deck panels, we need more efficient methods for attaching the panels and an understanding of whether these panels can be designed as noncomposite elements. This project will evaluate these issues. Contact Daniel Hsiao for more information about this project.

"Crashes in the Vicinity of Major Crossroads" is a project that will evaluate midblock crashes and their proximity to major crossroads, in an effort to understand the factors involved in these crashes and develop guidelines for setbacks of access points. Contact Doug Anderson if you have questions about this project.

These, and many other interesting projects, are getting underway over the next few months. Please consult the list on the <u>web site</u>, and contact in the Research Division for more information about the new projects or to get involved in these innovative efforts.

For more information, please contact Blaine Leonard bleonard@utah.gov or 801-965-4115

TO THINK OUTSIDE THE BOX

By: Michael Fazio, UDOT Research Division

As engineers we are trained to solve problems, and at times, we can come up with innovative solutions. Today, most of our research is applied to current methods and concepts. We are mostly gathering data about existing products, systems and technologies, but we are really not looking at the future and how to be innovative. How will bridges be built and maintained twenty or thirty years from now? Will cars be our main transportation method?

At a national forum on the future of hydrology and hydraulics research, several researchers from all over the country met to collect innovative research ideas. At the end of the forum, they had plenty of ideas but none was really innovative and forward looking. It's hard to get somebody to think outside the box, especially for engineers, who are trained to stay in the boundaries provided by standards and policies for security and safety.

Ideas are out there, but most of the time they come from sources outside our industry (schools, colleges and other industries). We must be able to recognize the good ones and be willing to invest in them, even if it means having to accept failure. The idea of producing bio-diesel on our right-of-way came from an agriculture student at USU. UDOT recognized the potential and invested in the idea. Even with this year's minimal crop production, this research, in my opinion, is a success and it's setting up a revolution of thought and process all across the states.

I hope that here in Research, we can balance the need of safety with the need to explore new ideas, methods and technologies for transportation, accepting even failure as a possible alternative to a sterile place with no ideas at all.

COMPLETED UDOT RESEARCH

Research publications are valuable resources, documenting the results of important research projects. For a list of recently completed Research Projects, please visit the Research & Development website at:

http://www2.udot.utah.gov/index.php?m=c&tid=

235. If you would like to obtain an electronic copy or a printed copy of our completed research, please contact Abdul Wakil awakil@utah.gov or

Joni DeMille <u>idemille@utah.gov</u>

NEED A LITERATURES SEARCH?

The UDOT Research Division and Lester Wire Library provide an important service through literature searches. These searches help identify published information about a topic of interest. To request a search, provide a brief description and some key words and submit it to Abdul Wakil awakil@utah.gov, Joni DeMille jdemille@utah.gov. Or you can submit your request online mttp://www.udot.utah.gov/index.php/m=c/tid=895/

Please send your comments and questions to Abdul Wakil awakil@utah.gov or (801) 964-4455